CDS 230
 Modeling and Simulation I

Module 2

Simple Physics Models

GEORGE
MASON
UNIVERSITY

Dr. Hamdi Kavak

http://www.hamdikavak.com
hkavak@gmu.edu
\mid Soner for

Linear motion

- Based on Newton's first law (i.e., the principle of inertia)
- An object with to net forces acting upon them will remain still or move with constant speed.

$$
x_{\text {end }}=x_{0}+v_{x} t
$$

This equation will determine where an object is after time $t_{\text {end }}$.
Starting location is x_{0}. Velocity is v_{x}. The time is t.

Linear motion

$$
x_{e n d}=x_{0}+v_{x} t \quad \text { re-arrange the equation as } \quad t=\frac{x_{e n d}-x_{o}}{v_{x}}
$$

In this equation, we have the starting position, the ending position, and the velocity.
We can determine the amount of time needed to make journey.

Let's represent this equation in Python

```
x0 = 0
x_end = 10
vx = 1.3
t = (x_end-x0)/vx
print("Time it takes to move from x1 to x2 is ", t, "seconds")
Time it takes to move from x1 to x2 is 7.692307692307692 seconds
```


Free fall

Watch: https://www.youtube.com/watch?v=E43-CfukEgs

$$
\text { Free fall formula: } \quad y_{2}=y_{1}+v_{y} t-\frac{1}{2} g t^{2}
$$

This equation also applies if a person is just dropping something from a height. In this case y_{1} would be a larger number.

Starting height $=y_{1}$.
Ending height $=y_{2}$.
Initial velocity $=v_{y}$.
Gravity $=g=9.8$ (For Earth)
Time $=t$

Free fall (code)

```
y1=50 # initial position
vy=0 # initial velocity
t=3 # time
g=9.8 # gravity
new_position = y1+vy*t-0.5*g*t**2
print("The new position after free fall is ", new_position)
The new position after free fall is 5.899999999999999
```


Predicting Time

$$
y_{2}=y_{1}+v_{y} t-\frac{1}{2} g t^{2}
$$

Predicting time is a little more involved because there is a t and a t^{2}.
This equation is of the form: $\quad a t^{2}+b t+c=0$

Do you remember the quadratic equation?

$$
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Thus..

$$
y_{2}=y_{1}+v_{y} t-\frac{1}{2} g t^{2}
$$

Solving for t becomes:

$$
t=\frac{-\mathrm{v}_{\mathrm{y}} \pm \sqrt{v_{y}^{2}+2 g\left(y_{1}-y_{2}\right)}}{-g}
$$

In Python use ${ }^{* *} \mathbf{0 . 5}$ for the square root or math. sqrt ().
Need two equations for the two cases: \pm. One equation will use + and the other equation will use -.

Questions?

Sources:
https://www.britannica.com/science/linear-motion

